Graded algebras with σ -involutions.

IRINA SVIRIDOVA * Universidade de Brasília, Brazil

August 23, 2017

Let R be a commutative associative unitary ring. We will consider associative noncommutative R-algebras graded by a finite abelian group G. Consider a skewsymmetric 2-cocycle $\sigma : G \times G \to U(R)$ stisfying the condition $\sigma(\alpha, -\alpha)^2 = 1$ for all $\alpha \in G$. A σ involution is a graded R-linear map of the 2-nd order $*_{\sigma} : A \to A$, defined in a G-graded R-algebra A, which satisfies the condition

$$(a_{\alpha}b_{\beta})^{*\sigma} = \sigma(\alpha,\beta) \quad b_{\beta}^{*\sigma}a_{\alpha}^{*\sigma}, \quad \forall a_{\alpha} \in A_{\alpha}, b_{\beta} \in A_{beta}, \quad \alpha,\beta \in G.$$

Observe that a σ -involution is a natural generalization of notions of a graded involution and a superinvolution of a superalgebra.

We will consider bilinear and sesqilinear graded forms and pairings of associative graded R-algebras and discuss some generalizations of various classical results for this case. Particularly, we will present analogues of Riesz representation theorem and Kaplansky's theorem [1] for σ -involutions of associative graded R-algebras. The last theorem shows the relations of σ -involutions with sesqilinear graded forms in primitive graded algebras, and implies a description of finite dimensional $*_{\sigma}$ -simple graded algebras.

The talk is based on a joint work with Keidna Cristiane Oliveira Souza. The work is partially supported by CNPq, CAPES.

References

 N. Jacobson, Structure of Rings, AMS Colloquium Publication 37, AMS, Providence, R.I., 1964.

^{*}Partially supported by CNPq, CAPES