Jornada de Álgebra no Amazonas - terceira edição Universidade Federal do Amazonas
 4 a 8 de setembro de 2017 - Parintins / AM

DECOMPOSITION OF LOOP ALGEBRAS.

VLADIMIR SOKOLOV (LANDAU INSTITUTE FOR THEORETICAL PHYSICS)
VSOKOLOV@LANDAU.AC.RU

Tipo de Atividade: Palestra
Carga horária: 1 horas.
Público-alvo: alunos de graduaço em Matemática, ou alunos de p'os-graduação em Matemática.

Resumo: In the first lecture we considered Lax pairs with polynomial and rational dependence on the spectral parameter λ. However, there exist important examples, where λ is a parameter on algebraic curves.

If we don't want to fix a priori the λ-dependence in Lax operator L, we may assume that L is a Laurent series in λ with coefficients being elements of a finitedimensional Lie algebra \mathcal{G}.

If we assume that L and A in the Lax equation are elements of $\mathcal{G}((\lambda))$, then the Lax relation is equivalent to an infinite set of evolution equations. To get a finite system of PDEs we need some additional assumptions on the structure of L and A.

The basic ingredient for constructing of Lax pairs in $\mathcal{G}((\lambda))$ is a vector space decomposition

$$
\begin{equation*}
\mathcal{G}((\lambda))=\mathcal{G}[[\lambda]] \oplus \mathcal{U} \tag{1}
\end{equation*}
$$

where $\mathcal{G}[[\lambda]]$ is the subalgebra of all Taylor series and \mathcal{U} is a so called factoring Lie subalgebra.

We discuss main properties of factoring subalgebras and establish relations between them and algebraic curves. All non-equivalent factoring subalgebras for $G=s o_{3}$ are found and an one-to-one correspondence with classical integrable models of the motion of a rigid body in an ideal fluid is described.
financiamento (Supported by) CAPES..

Referências

[1] Cherednik I.V. Functional realizations of basis representations of factoring Lie groups and algebras. Funct. Anal. Appl., 1985, 19(3), 36-52.
[2] Ostapenko V., Endomorphisms of lattices of a Lie algebra over formal power series field. C.R. Acad. Sci., 1992. Paris, 315, Serie 1, p. 669-673.
[3] Golubchik I. Z. and Sokolov V. V. Factorization of the loop algebra and integrable top-like systems. Theoret. and Math. Phys., 2004, 141(1), 1329-1347.

